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Abstract 

The free vibration of a two-mass system (TMS) with fixed ends having a coupled cubic-quintic nonlinear 

stiffness was investigated analytically. The TMS model accounts for different masses thus making it 

possible to study the effect of mass-ratio on the dynamic response. An algorithm called continuous 

piecewise linearization method (CPLM) was applied to determine the vibration response of the masses. 

Comparison of the CPLM results with exact results and results obtained from literature showed that the 

CPLM is more accurate. Results for the vibration histories showed that there were high fluctuations in the 

small-amplitude weak nonlinear response which were completely absent in the large-amplitude strong 

nonlinear response. Furthermore, detailed investigations on the effect of asymptotic mass-ratio on the 

vibration response of the TMS were conducted using analytically derived closed-form solutions. The 

results showed that the phase response of the masses under asymptotic mass-ratio are generally elliptical 

and characterized by flatten top and bottom ellipse in some cases, while narrow strip ellipses were 

obtained in other cases. Also, the frequency-amplitude response under asymptotic mass-ratio was found to 

be parabolic and symmetrical. This study provides very accurate solutions to a rather complex system and 

gives physical insight into the asymptotic mass-ratio response. 
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1. Introduction 

Nonlinear analysis has become the focus of 

recent investigations on system dynamics because a 

realistic and accurate quantitative and qualitative 

description of the behaviour most systems can only 

be achieved thereby. Furthermore, many important 

physical phenomena such as hardening/softening 

response, bifurcations, chaos, sub-harmonic 

resonance, and jumps, to mention but a few, can 

only be understood through nonlinear analysis. 

More recently, research attention in nonlinear 

analysis is shifting from single degree-of-freedom 

(DOF) systems to multi-MDOF systems. The 

reason for this shift is obvious as many systems in 

engineering and nature exhibit multi-DOF 

response. The 2-DOF system is important in 

understanding the response of multi-DOF systems 

and it represents the behaviour of a good number of 

pragmatic systems e.g. human vocal cord 

(Cveticanin, 2015), marine engine propeller system 

(Rao, 2015), lathe machine, double pendulum, and 

micro-electromechanical (MEM) and nano-

electromechanical (NEM) systems (Kovacic et al., 

2016). 

The TMS is a system with two lumped or rigid 

masses connected by a coupling spring and each 

mass moves in its own degree of freedom. Thus, 

the TMS exhibits a 2-DOF motion and is 

distinguished from a single mass system 

undergoing a 2-DOF motion (Telli and Kopmaz, 

2006). The TMS can be used to study the dynamic 

response of double-beam systems (Zhang et al., 

2008; Mirzabeigy and Madoliat, 2019). Therefore, 

the TMS has been investigated severally 

(Cveticanin, 2001,2002,2004,2012&2015; Lai and 

Lim, 2007; Hashemi Kachapi et al., 2010; Ganji et 

al., 2011; Bayat et al., 2011; Big-Alabo and Ossia, 

2019) and consists of two types, namely: TMS with 

(a) free ends (Cveticanin, 2001) and (b) fixed ends 

(Cveticanin, 2002). The fixed end TMS is more 

general and can be reduced to a free end TMS 

when the stiffness of the end springs connecting the 

masses to their support is zero. The main challenge 
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in the theoretical analysis of the TMS is the 

solution of the two coupled nonlinear differential 

equations governing the vibrations of the masses. 

The coupled nonlinear differential equations can be 

solved by various numerical schemes and the 

results are generally used as the exact solutions for 

the validation of approximate analytical schemes. 

In spite of the highly accurate results that can be 

obtained, the numerical solution approach is 

limited in terms of the physical insight it gives. 

Hence, theoretical studies on the TMS are better 

conducted using approximate analytical methods 

from which the dynamics of the system can be 

more properly understood.  

Studies on the TMS have been conducted using 

approximate analytical methods. Lai and Lim 

(2007) developed the Newton Harmonic Balance 

(NHB) method to derive third-order approximate 

solutions for a TMS with strong cubic nonlinear 

stiffness. Their solution produced very accurate 

results when compared to exact numerical 

solutions, but the analytical expressions obtained 

are lengthy and difficult to derive. Hence, applying 

the NHB method to the case of a coupling spring 

with cubic-quintic nonlinear stiffness would be 

algebraically complex. Cveticanin (2001) derived 

closed-form solutions for a TMS with strong cubic 

nonlinear stiffness using Jacobi elliptical functions. 

The Jacobi elliptic functions can be used to solve 

single-DOF systems with quadratic (Cveticanin, 

2004), cubic (Cveticanin, 2001&2002), and cubic-

quintic (Cveticanin, 2018) nonlinear stiffness. 

Other approximate analytical methods that have 

been applied to solve the nonlinear models of a 

TMS are Ateb function approach (Cveticanin, 

2015), max-min approach (Ganji et al., 2011), 

improved amplitude-frequency formulation (Bayat 

et al., 2011), first-order Ritz variational approach 

(Hashemi Kachapi et al., 2010) and CPLM (Big-

Alabo and Ossia, 2019). An interesting feature of 

the CPLM is its simplicity and accuracy even when 

applied to a complex nonlinear oscillator. Hence, 

the CPLM was applied in the present study. 

Existing studies on the fixed end TMS have 

been limited to the case of identical masses except 

the study by Big-Alabo and Ossia (2019) where the 

masses were considered to be different. Big-Alabo 

and Ossia (2019) only showed the existence of an 

asymptotic mass-ratio response but did not 

investigate its effect on the vibration response of 

the masses. Also, studies on the fixed end TMS 

with coupled cubic-quintic nonlinear stiffness have 

not been conducted. A TMS with a coupled cubic-

quintic nonlinear stiffness can be used for more 

accurate analysis of a coupled beam with in-plane 

loading (Zhang et al., 2008; Sedighi and Reza, 

2013). In this paper, an approximate periodic 

solution for the free vibration of a TMS with 

coupled cubic-quintic nonlinear stiffness was 

derived using the CPLM algorithm. The dynamic 

models developed for the vibration response of the 

system accounts for different masses and the effect 

of asymptotic mass-ratio on the vibration response 

of the system was examined. Results of the natural 

frequency and vibration history for various 

stiffness constants and masses were presented and 

discussed. 

2. Formulation of mathematical models for 

the TMS 
The TMS with fixed ends and coupling spring 

having cubic-quintic stiffness is shown in Figure 1. 

The end of each mass is connected to the 

supporting frame by linear springs such that their 

stiffness ratio is equal to the corresponding mass 

ratio. This condition, which was first introduced by 

Big-Alabo and Ossia (2019), allows for 

consideration of different masses and enables 

analysis of the effect of mass-ratio on the vibration 

response of the system. The total kinetic energy of 

the system in Figure 1 is: 
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Fig. 1: Fixed end TMS with coupling spring possessing cubic-quintic nonlinear stiffness characteristics 
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The total energy in the system is conserved and the 

Lagrangian is given as      . Based on the 

Euler-Lagrange formulation, 
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Using Equations (1 – 3) the coupled nonlinear 

equations for vibration of the masses were derived 

as: 
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where          and the initial conditions are: 

 ( )   ;  ( )   ;   ( )   and   ( )  . 
Let       be an intermediate transformation 

variable that represents the relative motion of the 

masses. Then Equations (4) and (5) can be written 

as: 
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Since       then Equation (7) becomes: 
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From Equation (6), 
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Substituting Equation (9) in (8) and after 

simplification, the equation for the relative motion 

was derived as: 

                                                  (  ) 
where              ;       

   ; 

      
    and   (         )

  
 is the 

effective mass. The initial conditions for equation 

(10) are:  ( )         and   ( )  . 
Equation (10) is a single-DOF differential 

equation with cubic-quintic nonlinearity and has 

been investigated in previous studies (Razzak, 

2016; Big-Alabo, 2018). A first order variational 

approach was applied by Razzak (2016) in which 

the displacement history was given as     (  ) 
and the natural frequency,  , was obtained from 

the variational formulation of the first order 

perturbation. On the other hand, Big-Alabo (2018) 

applied the CPLM algorithm and showed that it 

produced more accurate results for the natural 

frequency and vibration histories compared to the 

first order variational approach. The CPLM 

algorithm was applied in this study to solve for the 

z-motion in equation (10). Thereafter, the CPLM 

solution for the z-motion was applied to get the 

solutions for the x- and y-motions. 

3. Materials and methods 

3.1 Theory of the CPLM 

The CPLM is an iterative analytic algorithm 

that can be used to obtain approximate periodic 

solutions for conservative Duffing-type oscillators 

and was formulated by Big-Alabo (2018). The 

principle by which the CPLM solves nonlinear 

Duffing-type oscillations is the piecewise 

discretization and linearization of the nonlinear 

stiffness or restoring force with respect to 

displacement. Application of the linearized 

restoring force in the governing equation produces 

a standard linear differential equation for each 

discretization. The solution of the linear differential 

equation approximates the solution of the nonlinear 

oscillator over a range of time determined by the 

algorithm. The algorithm automatically updates the 

time range and the constants in the solution as it 

moves from one discretization to the next. Further 

details on the piecewise discretization and 

linearization technique can be obtained from the 

following articles (Big-Alabo et al., 2015&2017). 

3.2 Solution of the relative motion 

Equation (10) can be expressed in standard form 

as: 

     ( )                                                          (  ) 
where  ( )            is the cubic-quintic 

nonlinear restoring force. Based on the CPLM, the 

linearized force for each   discretization of the 

nonlinear restoring force is given as (Big-Alabo, 

2018): 

 ( )    (    )  (  )                               (  ) 
where     [ (  )  (  )] (     ) is the 

linearized stiffness for each discretization,   
              and       are the start and 

end points of each discretization. Note that  (  ) 
and  (  ) are evaluated using the nonlinear 

restoring force. Hence,   

       (  
         

 )  (  
    

     

              
   
      

    
 )                                     (  ) 

Substituting Equation (12) in (11) gives the 

standard linear differential equation of each 

discretization as: 

                (  )                                (  ) 
The solution to Equation (14) depends on whether 

        or        (Big-Alabo and Ossia, 2020). 

Considering that  ,  , and   are all positive, so that 

       , then the displacement and velocity of the 

relative motion can be written as: 

        (        )                            (   ) 
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and 

            (        )                          (   ) 

where     √(      )
  (  

     )
 ,     

√    and         (  )    . The constants 

    and     depend on the initial conditions, which 

are determined together with other parameters 

(phase angle,     and time range,   ) based on the 

vibration stage (Big-Alabo and Ossia, 2020). For 

the vibration stage where the velocity is negative, 

the initial conditions for each discretization are 

     ( )       and   
    

 ( ) 

 √| ∫   ( )   
  
 

| ; where        and the 

other parameters are calculated as: 

    {
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 ; 
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The first expression for    applies when    
        while the second applies when    
       . 

For the vibration stage where the velocity is 

positive, the initial conditions are      ( ) 

       and   
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whereas the other parameters are calculated as: 
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The conditions for    in the negative velocity stage 

apply here too. 

Using  ( )            the initial velocities 

are calculated as: 

  
   √ (     
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 (     
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 (     

 )  

                                                                                      (  ) 
The time at the end of each discretization was 

calculated as          and the end conditions 

   and   
  were obtained by replacing   with   in 

the formulae for initial conditions. Except the first 

discretization, the initial conditions for the     
discretization are the same as the end conditions for 

the (   )   discretization. 

3.3 Solution of the response of the masses 

3.3.1 Solution of the vibration of mass    
From Equation (6), the vibration of mass    

can be expressed as: 
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The right hand side of Equation (17) can be 

expressed in terms of the restoring force as follows: 
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Applying Equation (18), Equation (17) can be 

written as: 
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By substituting the CPLM solution for 

displacement (Equation (14)) and the linearized 

restoring force (Equation (12)) in Equation (19), 

the closed-form solutions for the x-motion were 

obtained as follows: 
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 (  ) and    is the initial 

time. In general and under pragmatic conditions, 

    . Hence, for non-zero initial displacements 

and velocities the following are deduced:   ( ) 
 (    ) ;   

 ( )  (    ) 
 ( );    

[  ( ) (    ) 
 ( )]  ⁄  and       

(    ) . Consequently, Equations (20) and (21) 

simplify to: 
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3.3.2 Solution of the vibration of mass    

Using the intermediate variable definition 

together with Equations (20) and (21) the 

displacement and velocity of the y-motion were 

derived as: 

       (   )      (   ) (  
 

  
)  

                                                                                    (  ) 
and 

     [     (   )      (   )] 

(  
 

  
)                                                      (  ) 

Thus, for non-zero initial displacement and 

velocity, 
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3.3.3 Special cases of the solutions for fixed end 

TMS 

The displacements and velocities of the x- and 

y-motions derived in Equations (22), (23), (26) and 

(27) are for non-zero initial conditions and different 

masses in a fixed end TMS. This situation 

represents a general solution but in some situations 

the conditions are special cases of the above. The 

solutions for three important special cases were 

derived from the general solutions as shown below. 

TMS with free ends (special end condition) 

The free end TMS is a special case of the fixed 

end TMS in which the stiffness of each end spring 

is zero i.e.     . This means that      and the 

solutions of the x- and y-motion are: 
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Special initial conditions 

The initial conditions investigated in this study 

are non-zero initial displacements and zero initial 

velocities i.e.  ( )   ;  ( )   ;  ( )    
    ;   ( )  ;   ( )   and   ( )  . The 

solutions for the x- and y-motions of the fixed end 

TMS under these special initial conditions were 

derived as: 
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The corresponding solutions for the free end TMS 

can be derived from Equations (28a – d) or by 

substituting      in Equations (29a – d). 

Case of identical masses 

For identical masses,       and      

   . Substituting this condition in the Equations 

(22), (23), (26) and (27), and after algebraic 

simplification, the solutions of the x- and y-

motions for identical masses are: 
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Equations (30a – d) have been derived in previous 

studies (Cveticanin, 2015) using a different 

approach. In the study, the coupled nonlinear 
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differential equations for a fixed end TMS with 

identical masses were transformed into two 

uncoupled differential equations by means of 

intermediate variables. The uncoupled equations 

consist of a nonlinear differential equation 

describing the relative motion of the masses and a 

linear differential equation describing the 

cumulative motion of the masses. Both uncoupled 

equations were solved simultaneously to arrive at 

Equations (30a – d). The corresponding solutions 

for the free end TMS can be derived by substituting 

     in Equations (30a – d). 

4. Results and discussion 

4.1 Natural frequency and vibration history 

The results discussed here were obtained by 

implementing the CPLM for     . All results 

are presented in dimensionless form so that any 

convenient unit system can be applied. The CPLM 

estimates of the natural frequencies for various case 

studies including those of large-amplitude 

vibrations and strong nonlinearity were compared 

with exact results and other approximate analytical 

methods (Razzak, 2016; He, 2002). The exact 

results are based on accurate numerical solutions 

obtained using the NDSolve function in 

Mathematica™. The natural frequency results are 

summarized in Table 1, which shows that the errors 

in the CPLM estimates are negligible and the 

CPLM is more accurate than the other approximate 

methods. In Table 1, the percentage relative error 

of each estimate is shown in brackets and was 

calculated as     (      )⁄ . Note that the 

frequency-amplitude solutions for the approximate 

methods by Razzak (2016) and He (2002) are 

respectively given as Equations (31) and (32): 

  √   
  

   
   

  
   

   
   

                     (  ) 

  √   
 

 
   

  
 

  
   

                             (  ) 

 

 
Fig. 2: Vibration histories for the x- and y-motions of the fixed end TMS with weak nonlinear coupling 

spring and small-amplitude vibrations. Solid line – CPLM, Markers – Exact 

 
Fig. 3: Vibration histories for the x- and y-motions of the fixed end TMS with strong nonlinear coupling 

spring and large-amplitude vibrations. Solid line – CPLM, Markers – Exact 
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Table 1: Natural frequency estimates for various system characteristics of a TMS with fixed ends 

 

 Input values System description Approximate frequency (    ⁄ )  

s/n                  
      

        Amplitude Nonlinearity Eq. (31) Eq. (32) CPLM Exact 

1 1 2 1 1 2 3 0.5 1 Small Weak 
1.0039 

(− 0.39%) 

1.0004 

(− 0.04%) 

1.0000 

(0.00%) 
1.7970 

2 4 2 1 1 2 3 1 3 Moderate Weak 
1.0311 

(− 3.11%) 

0.9817 

(1.83%) 

1.0000 

(0.00%) 
5.0538 

3 3 5 1 1 2 3 − 10 50 Large Weak 
1.0403 

(− 4.03%) 

0.9778 

(2.22%) 

1.0000 

(0.00%) 
3401.2620 

4 4 10 5 10 50 100 0.2 − 0.3 Small Strong  
1.0070 

(− 0.70%) 

0.9978 

(0.22%) 

1.0000 

(0.00%) 
3.0440 

5 10 4 5 10 50 100 − 1 1 Moderate Strong  
1.0327 

(− 3.27%) 

0.9796 

(2.04%) 

1.0000 

(0.00%) 
19.1756 

6 10 100 5 10 50 100 200 500 Large Strong  
1.0404 

(− 4.04%) 

0.9778 

(2.22%) 

1.0000 

(0.00%) 
222928.1495 
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Investigations were conducted on the vibration 

histories of the fixed end TMS. Two cases were 

considered for this investigation, namely: a fixed 

end TMS characterized by (a) weak nonlinearity 

and small-amplitude vibrations (serial number 1 of 

Table 1), and (b) strong nonlinearity and large-

amplitude vibrations (serial number 6 of Table 1). 

The vibration histories determined using the CPLM 

algorithm and numerical solutions are shown in 

Figures 2 and 3. The vibration histories were 

plotted for a time range of up to    where   is the 

time period. Figure 2 shows that there are 

fluctuations in the vibration histories of the x- and 

y-motions for a TMS with weak coupling 

nonlinearity and small-amplitude vibrations. These 

fluctuations were eliminated for the TMS 

possessing strong coupling nonlinearity and 

exhibiting large-amplitude vibrations as shown in 

Figure 3. It was observed that the velocity history 

in Figure 3 is almost constant around the turning 

points for both x- and y-motions. In each cycle, the 

velocity history is almost constant for about 40% of 

the time period and the corresponding displacement 

history during this period exhibits a quasi-linear 

behaviour. This quasi-linear behaviour is a 

characteristic of strong nonlinear and/or large-

amplitude vibrations (Big-Alabo, 2018). 

4.2 Effect of limiting (asymptotic) mass-ratio on 

the vibration response of the fixed end TMS 

This section presents CPLM solutions for the 

vibration response in the case of asymptotic mass-

ratio conditions. Two asymptotic conditions were 

considered as follows: (a) mass-ratio approaches 

infinity and (b) mass-ratio approaches zero. These 

asymptotic mass-ratio conditions are important 

considerations because they represent the TMS 

response in the cases of very large and very small 

mass-ratios respectively. The investigations 

conducted involved analysis of the vibration 

histories (i.e. phase plots) and the natural 

frequencies for (i) weak nonlinear and small-

amplitude oscillations and (ii) strong nonlinear and 

large-amplitude oscillations.  

4.2.1 Influence of limiting mass-ratio on the 

phase response of the fixed end TMS 

The x- and y-motions of the fixed end TMS 

with zero initial velocities are determined using 

equations (29a – d). The equations show that the x- 

and y-motions depend on the ratio      which is 

a function of the ratio of the vibrating masses    

i.e.         (    ). In the limiting cases, as 

     then        and as      then 

       . Therefore, the responses of the x- and 

y-motions under the limiting cases can be 

examined using Equations (29) as follows.  

(a) Very large mass-ratio (    ) 

Substituting        in Equations (29a – d) 

gives the following parametric equations: 

       (   )                                             (   ) 

           (   )                                    (   ) 

       (   )                                                   (   ) 

           (   )                                        (   ) 

The parametric equations in Equations (33c, d) 

represent the equation of an ellipse with centre at 

the origin (0, 0) and vertices at (       ) and 

(     ). Hence, the phase diagram of the y-motion 

for very large    is an ellipse. In a situation where 

     the phase diagram of the y-motion for very 

large    becomes a circle with center at origin and 

a radius of   . Figures 4 and 5 show the phase 

diagrams for the x- and y-motions when the inputs 

are the same as serial numbers 1 and 6 of Table 1 

respectively. In order to observe the complete 

evolution of the system’s response the phase 

diagrams in Figure 4 were plotted for forty 

oscillation cycles (i.e.        ) with    
    when     , while those of Figure 5 were 

plotted for ten oscillation cycles with      
  

when      . Figure 4 is for the case of weak 

nonlinear and small-amplitude vibrations, and the 

phase diagram of the y-motion is a circle because 

    . The phase diagram of the corresponding x-

motion forms an intertwined pattern having two 

foci at (      ) and (     ), and a limiting 

elliptical curve with vertices at (      ) and 

(        ).On the other hand, Figure 5 represents 

the case of a strong nonlinear and large-amplitude 

vibration. The phase diagram for the x-motion is an 

ellipse with flattened top and bottom. The region 

where the top and bottom are flat represents the 

quasi-linear displacement regime. This response 

occurs because of the combined effects of strong 

nonlinearity and large-amplitude vibrations that 

characterized the TMS. The phase diagram for the 

y-motion is a slight curve from point (     ) to 

(                  ). The maximum velocity 

of the y-motion,        , is negligible compared 

to the velocity of the corresponding x-motion 

which is in the order of    . It then implies that 

mass    is stationary at the point (     ) when 

   is very large. This conclusion can be reached by 

considering the parametric equations of the y-

motion (see Equations (33c, d)). For Figure 5, the 
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time period is            and         ; 
hence, the product     is very small. This implies 

that    (   )   and    (   )   so that from 

Equations (33c, d) we get      and     , 
which confirms that mass    is stationary at 

(    ) (     ). 

 
Fig. 4: Phase diagram for the x- and y-motions of the fixed end TMS with weak nonlinear coupling 

spring and small-amplitude vibrations for      

 
Fig. 5: Phase diagram for the x- and y-motions of the fixed end TMS with strong nonlinear coupling 

spring and large-amplitude vibrations for      

(b) Very small mass-ratio (    ) 
Substituting           in Equations (29a 

– d) gives the following parametric equations: 

       (   )                                                 (   ) 

           (   )                                        (   ) 

       (   )                                             (   ) 

           (   )  
                                 (   ) 

The phase diagrams for the x- and y-motions in the 

limiting condition of very small mass-ratio are 

shown in Figure 6 for the case of weak nonlinear 

and small-amplitude vibration, and Figure 7 for the 

case of strong nonlinear and large-amplitude 

vibration. These figures were generated from 

CPLM solutions for      
  . In Figure 6, the 

phase diagram for the x-motion shows negligible 

variations in its displacement and velocity and this 

suggests that mass    is stationary at point 

(     ). The time period for Figure 6 is       
     and     , meaning that    (   )   and 

   (   )  . Therefore, from Equations (33a, b) 

     and     , which confirms that mass    
is stationary at (    ) (     ). For the y-motion 

in Figure 6, the phase diagram is elliptical with 

centre at (     ), horizontal vertices at (   ) and 

(   ), and vertical vertices at (           ) and 

(            ). Recalling that      , it is 

evident that the elliptical response of the y-motion 

is due to the z-motion since mass    is effectively 

stationary. In Figure 7, the phase diagram of the x-

motion appears as a flattened top and bottom 

elliptical curve but the mass    is effectively 

stationary for the same reasons adduced for the x-

motion in Figure 6. However, the phase diagram 

for the y-motion in Figure 7 is actually a flattened 
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top and bottom elliptical curve and can be 

explained in the same way as the x-motion in 

Figure 5. The displacement and velocity axes of the 

y-motion in Figures 6 and 7 do not have the same 

scale. If this were the case, the phase diagrams for 

the y-motion in Figures 6 and 7 would appear as 

narrow strip ellipses that are like degenerate 

ellipse. This is because the maximum velocity is 

much larger than the maximum displacement.  

 
Fig. 6: Phase diagram for the x- and y-motions of the fixed end TMS with weak nonlinear coupling 

spring and small-amplitude vibrations for      

 
Fig. 7: Phase diagram for the x- and y-motions of the fixed end TMS with strong nonlinear coupling 

spring and large-amplitude vibrations for      

4.2.2 Influence of limiting mass-ratio on the 

frequency-amplitude response of the fixed end 

TMS 

 The expression for the velocity of the relative 

motion can be derived from equation (10) as: 

    √ (     ) 
 

 
 (     ) 

 

 
 (     )  

                                                                                          (  ) 

At maximum relative velocity the relative 

displacement is zero. Hence, 

    
   √  

 

 
    

 

 
     

To derive an expression for the frequency-

amplitude response under limiting mass-ratio 

condition, a normalized time period is defined as 

(Big-Alabo and Ossia, 2019):      (    
   ) . 

Consequently, the frequency-amplitude response 

for any mass-ratio is: 

  
  

    
√  

 

 
    

 

 
                              (  ) 

When      then      so that   
(      )   .       

     and       
    . 

Therefore, 

       
  

    
  
  
 

   

                    √       
 

 
    
    

 

 
    
      (  ) 

When      then      so that         , 

because       is negligible in comparison to 
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      . Also,       
     and       

    . 

Therefore, 

       
  

    
  
  
 

   

                    √    
 

 
    
    

 

 
    
            (  ) 

Equations (37) and (38) represent the frequency-

amplitude response under the two cases of 

asymptotic mass-ratio. Figure 8 shows the 

frequency-amplitude response simulated using 

equation (37); the short dash line represents a weak 

nonlinear coupling while the solid line represents a 

strong nonlinear coupling. From CPLM solution 

the value of      used for the simulations was 

calculated as 4.857. Also, Figure 8 contains results 

obtained from numerical integration of equation 

(10) and it can be seen that equation (37) agrees 

well with the numerical results. The frequency-

amplitude response for very large mass-ratio is 

essentially parabolic with symmetry about the 

    line. In Equation (38) the frequency 

increases as    decreases for any value of  . Since 

     as     , it means that in the limit where 

     the frequency is infinite. The implication 

is that there is no limiting frequency-amplitude 

response for very small mass-ratio.  

 
Fig. 8: Limiting frequency-amplitude response for 

the fixed end TMS with very large mass-ratio 

 

All equations derived for the limiting mass-ratio 

conditions including Equation (38) are based on the 

assumption that    is kept constant while    is 

varied to achieve the limiting mass-ratio condition. 

If    is kept constant and    is varied to achieve 

the very small mass-ratio condition, then the 

frequency-amplitude response will be the same as 

Equation (37) with    replacing     In that case, 

the frequency-amplitude plots for weak and strong 

nonlinearity when the mass-ratio is very small 

would be similar to Figure 8. 

5. Conclusions  

In this paper, the free vibration of a fixed end 

TMS with coupling cubic-quintic nonlinear 

stiffness and different masses was investigated 

analytically using the CPLM algorithm. The 

accuracy of the CPLM algorithm was verified 

using numerical solutions and other approximate 

analytical methods. The CPLM algorithm was 

found to produce negligible error and predicted the 

natural frequencies and vibration histories of the 

TMS with exceptional accuracy.  

Through the CPLM algorithm, closed-form 

solutions for the vibration response of the masses 

were derived in terms of their relative motion and 

used to analyse the TMS under asymptotic mass-

ratio conditions. The effect of asymptotic mass-

ratio on the vibration response of the TMS was 

investigated by considering the phase response and 

the frequency-amplitude response. The phase 

response of the masses under asymptotic mass-ratio 

was found to be generally elliptical with flatten top 

and bottom ellipse in some cases while narrow strip 

ellipses were obtained in other cases. On the other 

hand, the frequency-amplitude response under 

asymptotic mass-ratio was found to be parabolic. 

The analytical solutions derived for the phase 

response under asymptotic mass-ratio conditions 

were found to be in agreement with CPLM 

solutions. These analytical solutions are expressed 

in terms of the relative motion of the masses. 

Because the relative motion is conservative, its 

state-space representation (    ) can be readily 

obtained and applied in equations (33a – d) and 

(34a – d) to determine the state-space response of 

the masses, (    ) and (    ). Therefore, the state-

space response of the masses of the TMS can be 

determined for asymptotic mass-ratio conditions 

without need for numerical integration of the 

governing dynamic equations. Finally, the study 

shows that the CPLM algorithm is a simple and 

accurate approximate analytical method that can be 

applied to obtain periodic solutions for a TMS with 

nonlinear Duffing-type coupling springs. 
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Nomenclature 

  amplitude of the relative motion 
   linear stiffness constant 

    stiffness constant for the coupling linear stiffness 

    
  stiffness constant for the coupling cubic nonlinear stiffness 

    
  stiffness constant for the coupling quintic nonlinear stiffness 

      masses of the TMS 
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   mass-ratio of    to    

    degrees of freedom of    and    respectively 

   initial amplitude of mass    
   initial amplitude of mass    

 


