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Abstract 

In this paper, a Kalman Filter-based Bayesian model have been proposed for the estimation and 

simulation of the remaining useful life of a sensor and actuator components embedded in a complex 

mechanical system that is subjected to harsh operational and environmental conditions. Results from the 

simulations shows that, in the absence of process noise in the components, the output value for the 

remaining useful life decreases steadily over time. However, when the sensor and actuator components are 

exposed to a quantify process noise, the simulated results show a drastic shift from normal. It can 

therefore be concluded that when the sensor and actuator components are subjected to the harsh 

operational and environmental conditions their remaining useful life becomes irregular and sometime 

unpredictable, hence precaution should be taking to avoid process noise as much as possible in sensor and 

actuator component. 
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1. Introduction 

The need to increase the competitiveness of 

industrial systems, demands that the maintenance 

cost is reduced, without compromising safety in the 

industrial system’s operations (Aikhuele et al., 

2020). Forecasting the future behavior of a 

component or systems allows more serious 

maintenance planning, cost savings, and the 

prevention of unexpected downtime and repairs. 

Although the cost of unexpected downtime is much 

higher than the cost of performing repairs and 

returning component or systems to its initial service 

condition (Tabikh, 2014). Generally, the prediction 

of future failures or system behavior, provides the 

important information needed for strategic 

decision-making in the industrial systems 

(Aikhuele, 2021b).  

Condition-based maintenance (CBM) which is 

an effective maintenance model used for future 

system failure behavior evaluation, involves a real-

time analysis of equipment sensor data, and could 

help in the maintenance and condition planning for 

the remaining useful life (Verbert et al., 2017). The 

maintenance activities which are performed on the 

basis of necessity (Aikhuele, 2021a), provide 

opportunities for authentic learning. These learning 

however, could be grouped into, failure learning 

where the root cause of failure of the system is 

determined through a special program where 

manufacturer learn from mistakes with the purpose 

of improving the overall system. And through a 

repetitive learning, which can be described from 

the point of the repetitive nature of preventive 

maintenance (PM) strategy, where manufacturer 

gains knowledge, experience and learns to perform 

the PM activities faster at a reduced cost (Tarakci, 

2015).  

In using the condition-based maintenance 

model, a deterioration indicator that correctly 

describes the dynamic nature of the failure process 

is evaluated and obtained. The evaluation is based 

on information collected on the various 

deterioration-related parameters of the system, 

which include, vibration, temperature, pressure, 

noise levels and the type of lubricating oil used 

(Liu et al., 2021). Although several studies have 

investigated the different modelling approaches for 

the deterioration indicator of industrial systems, 

however, there are still opportunity for the design 

of a progressive monitoring approach and model 
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for systems with dynamic operating condition and a 

high monitoring cost. Based on this preposition, 

industrial systems can be efficiently monitored to 

track their real-time health status during operation, 

the gained data are then processed to extract 

relevant features associated with the degradation 

condition of the system/components (Biggio and 

Kastanis, 2020). Sensor and actuator which are a 

very important part of the industrial systems and 

with a dynamic operating condition, gives an 

interesting research problem (Valade et al., 2017). 

They are composed of electronic, electrical and 

mechanical subsystems which result in implicit 

failure effects and modes. Any fault leading to 

failure in these sub-systems needs to be efficiently 

identified, detected and isolated using a limited set 

of signals available (Coble, 2010; Hasan and 

Johansen, 2018), also it is important that their 

remaining useful life are estimated and monitored 

through a simple and cost effective predictive 

approach. 

Sensors and actuators are essential elements of 

embedded system that are used for monitoring and 

measuring the continuous and discrete process 

variable and parameters of a system (Zyrianoff et 

al., 2020). They are located at the most remote part 

of a system and are mainly subjected to a very 

harsh operational and environmental conditions 

like high heat, freezing temperature, moisture, 

mechanical tire and wear and vibration (Moore et 

al., 2020). It is on this basis therefore, that this 

study seeks to evaluate the remaining useful life 

estimates of the actuators and sensors system by 

using Kalman Filter-based Bayesian model where 

the different harsh operational and environmental 

conditions are considered. 

2. Materials and methods 

2. Kalman filter-based Bayesian model 

The Kalman filtering method which is based on 

statistics and control theory assumptions, can be 

referred to as a linear quadratic estimation (LQE) 

of a statistical and control systems (Baltieri and 

Buckley, 2020). Its algorithm uses a series of 

measurements that contain statistical noise and 

other inaccuracies taken over time to produce 

estimates of unknown variables that are more 

accurate than those that are based on a single 

measurement (Aditya et al., 2018). This is 

accomplished by calculating a joint probability 

distribution for each timeframe's variables. The 

Kalman filter works well for analyzing the 

behavior of systems that change or grow over time. 

It is useful in circumstances where we may have 

ambiguous information (e.g., statistical noise and 

other inaccuracies) regarding the current state of a 

system in order to estimate information about how 

the system will look in the future (say, in the next 

state) (Akram et al., 2019; Li et al., 2015).   

It is possible to estimate the future state k, by 

capturing specific correlations in the processes 

relevant to the system based on its current state, 

say 𝑡 = 𝑘 − 1. If we assume that a quantity 𝑦 is 

observed over time, and the observed quantity is 

represented with the data 𝑦1, 𝑦1, … , 𝑦𝑛, it can 

therefore be said that it fits into a simple linear 

regression model as shown in Equation (1). 

𝑦𝑖 = 𝜃1 + 𝜃2𝑡𝑖 + 𝜖𝑖                                                    (1) 

 

where  𝜖𝑖~𝑁(0, 𝑣2) and is given as the random 

noise that is added to the linear regression model, 

the epsilons are sampled independently from a 

normal distribution with a zero mean and variance 

𝑣2. The time of observation is given as 𝑡1 <
𝑡2 … 𝑡𝑛. If a simple construct is consider such that 

the data is represented as 𝐻 and the parameter as 𝜃, 
then they can be defined as 𝐻𝑖 = [1, 𝑡𝑖] 𝑎𝑛𝑑 𝜃 =

[
𝜃1

𝜃2
] respectively, where the observed values of the 

quantity 𝑦 is defined as being sampled from a 

normal distribution, 𝑦𝑖~𝑁(𝐻𝑖𝜃, 𝑣2). If an 

independent and identically distributed 

observations are considered, the likelihood of 𝑦 

given the parameter 𝜃, for which 𝑖 = (0,1,2, … , 𝑛), 

follows the normal distribution as a joint condition 

over all the observations, this is given as a product 

(Equation (2)). 

𝑝(𝑦|𝜃) = ∏(2𝜋𝑣2)−1/2 exp (−
1

2𝑣2
 (𝑦𝑖

𝑛

𝑖=1

− 𝐻𝑖𝜃))                                         (2) 

Without loss of generality, 𝑝(𝑦|𝜃) can be further 

extended, such that the dataset with n points are 

given using the matrix in the form of a Bayesian 

notations.  

𝑦|𝜃~𝑁𝑛(𝐻𝜃, 𝑣2𝐼𝑛)                                                    (3) 

where 𝐼𝑛 is an n-dimensional identity matrix that 

applies the likelihood approach of Bayesian model 

in the Kalman filter method, the Bayesian model is 

an intuitive technique that involves the 

improvement of prior understanding of a condition 
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or system, to provides a more certain posterior 

probability estimate, in the light of new 

observations of the condition or system. Generally, 

the Bayesian model (Bayes theorem) can be 

represented by the formation: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴).𝑃(𝐴)

𝑃(𝐵)
                                                (4)  

On putting the above Bayesian model in 

perspective as it relates to the parameter (𝜃) 

presented above, then the model can be rewritten 

as:  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
𝑝(𝜃|𝑦) =

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑      𝑃𝑟𝑖𝑜𝑟
𝑝(𝑦|𝜃)           .           𝑝(𝜃)

∫ 𝑝(𝑦𝑖 , 𝜃)𝑑𝜃
𝜃=1

𝜃=0

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

                 (5) 

which is the intuitive Bayesian model, and can be 

related to the Kalman filter method. In this sense, 

the model parameter (𝜃) is assumed to be dynamic 

and evolves over time. The mathematical formation 

of the model parameter is given as: 

  
𝜃𝑘 = 𝐴𝜃𝑘−1 + 𝑞𝑘 − 1, 𝑞𝑘 − 1~𝑁(0, 𝑄)      (6) 

where 𝑞 is a random variable drawn from a normal 

distribution with a mean of zero and a variance of 

Q. The intuitive Bayesian model which is based on 

the Kalman filter method can therefore be 

represented as: 

𝑦𝑘 = 𝐻𝑘𝜃𝑘 + 𝜖𝑘 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙
𝜃𝑘 = 𝐴𝜃𝑘−1 + 𝑟𝑘−1                   𝑆𝑖𝑔𝑛𝑎𝑙

}          (7) 

This is a linear state-space model in which the 

initial component of the signal is observed along 

with some process noise. This simple model which 

is used to develop intuition, can be extended to a 

more sophisticated models that do not have a linear 

relationship, if sample from the distribution of the 

system is considered which can be referred to as a 

filtering problem, then the first and second 

component of the signal can be reconstructed and 

estimated. 

3. Results and discussion 

In this section, the Kalman Filter-based 

Bayesian model is implemented for the evaluation 

of the remaining useful life of the sensors and 

actuator embedded in a complex mechanical 

system. To achieve the aim of the study, a number 

of simulations have been carried out to verify the 

effectiveness of the model. In measuring the 

performance and remaining useful life of the 

sensors and actuators systems, several scenarios of 

process noise (i.e. the harsh operational and 

environmental conditions in the system) are 

quantified and simulated, starting with a sensor and 

actuator component that is not affected with any 

operational and environmental conditions.  

Scenarios 1 - No Process noise 

A sensors and actuator component embedded in 

a mechanical system with no process noise (w) is 

evaluated using the Kalman Filter-based Bayesian 

model. If the component has a gain value a=0.85 

which is derived from a maximum likelihood 

estimation, then the output value for the remaining 

useful life of the component can be simulated. The 

result of the output value for the remaining useful 

life of the component decreases steadily when the 

output gain (h) is set equal to 3, (i.e. h=3), when the 

measurement noise (v) and when the covariance 

(R) is set to 1, (i.e. R=1). The simulated result has 

been shown in the Fig. 1, where the upper left 

graph consists of the actual (exact) state values 

which have been heighted in red, the priori 

estimates in blue – (i.e. the predictor step) and the 

posteriori estimate in green – (i.e. the corrected 

step).  The initial guess of the state is set at 1.5, 

while the initial estimate of the a posteriori 

covariance is set at 1. Similarly, the lower left part 

of the graph shows the actual error that is between 

the estimates of the systems and the actual state of 

the sensor and actuator systems. Finally, the graph 

on the upper right part shows the calculated 

covariance, while the graph at the lower right 

shows the Kalman filter gain. 



Uniport Journal of Engineering & Scientific Research Vol. 6, Issue 1, 2021 Page 176 

 

 
Fig. 1: Remaining useful life of sensor and actuator system with no noise (steady and normal) 

Scenarios 2 - Process noise 

In this case study, all the parameters associated 

with the sensor and actuator components are 

assumed to be constant and the process noise 

within the system is increased gradually to Q=0.01, 

such that the linear state-space model becomes 

dynamic. The simulated results from the dynamic 

state-space model which has been presented in Fig. 

2, show that the present of process noise within the 

sensor and actuator components, will results in a 

steady shift from normal in the remaining useful 

life estimate of the sensor and actuator 

components. This however, has been captured in 

the figure as shown in the state with a priori and 

posteriori elements graph, actual priori and 

posteriori error, calculated priori and posteriori 

covariance and the Kalman gain graph.  

Scenarios 3 – Increase in the process noise 

If the process noise is gradually increased 

further, which could represent the continuous usage  

 

of the sensor and actuator systems over a period of 

time, when all other parameters associated with the 

sensor and actuator components are assumed to be 

constant. Then the results from the simulation, as 

shown in Fig. 3 is not surprising, as the remaining 

useful life is expected to further drift from normal 

when compare with Fig. 1 (no process noise) and 

Fig. 2 (with a process noise of Q=0.01). Again, 

from the figure, it is observed that, the posteriori 

estimate is closer to the exact value at each step 

than it is in the priori estimate. Also, the calculated 

priori and posteriori covariance started high, but 

drop immediately, while in the Kalman gain, it 

drops and balance up immediately. The remaining 

useful life estimate of the sensor and actuator 

components in this case study however, is 

determined from the priori estimate, since it does 

not drop as low as in the first case where process 

noise was removed, or in the second scenario with 

some amount of process noise.  
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Fig. 2: Remaining useful life of sensor and actuator system with process noise of Q=0.01 

 
Fig 3: Remaining useful life of sensor and actuator system with process noise of Q=0.1 
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Scenarios 4 – Increase measurement noise 

In this case study, unlike the previous scenarios, 

the process noise is increased to (Q=2) while the 

other parameters remain the same. This is mainly to 

check the flexibility of the parameters and to see if 

the process noise parameter also has effect on the 

simulated outcome. From the Fig. 4, it is not hard  

 

 

to see that, the process noise parameter has a lot of 

effect in the outcome of the remaining useful life 

simulation of the sensor and actuator system. This 

result could also be interpreted in the form; if the 

sensor and actuator components are maintained, 

monitored or serviced regularly, the remaining 

useful life of the system could improve. 

 
Fig. 4: Remaining useful life of sensor and actuator system with increased process noise Q=2 

 

From the results of the case scenarios presented 

above, the study can conclude therefore that in the 

absences of process noise (harsh operational and 

environmental conditions), the output value for the 

remaining useful life of the sensor and actuator 

components decreases steadily over time. However, 

the results changes drastically when the 

components are subjected process noise. It can 

therefore be said that when the sensor and actuator 

components are subjected to the harsh operational 

and environmental conditions their remaining 

useful life becomes irregular and unpredictable as 

seen in the figures. 

4. Conclusions  

In this study, the remaining useful life estimate 

of sensor and actuator components have been 

studied using a Kalman Filter-based Bayesian 

model. Sensor and actuators which are essential 

elements that are usually embedded in complex 

mechanical systems, are used for monitoring and 

measuring the continuous and discrete process 

variable and parameters. They are often located at 

the most remote part of a system and are mostly 

subjected to very harsh operational and 

environmental conditions like high heat, freezing 

temperature, moisture, mechanical tire and wear 

and vibration. It is important therefore, that the 

remaining useful life of the sensor and actuator 

components are checked and estimated.  

In implementing the Kalman Filter-based 

Bayesian model, a number of simulations have 

been undertaken, mainly to verify the effectiveness 

of the model for estimating the remaining useful 
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life of the sensor and actuator components. This 

has been achieved by simulating several case 

scenarios of process noise (quantified harsh 

operational and environmental conditions) in a 

sensor and actuator components embedded in a 

complex mechanical system. Results from the 

simulations shows that, in the absence of process 

noise in the components, the output value for the 

remaining useful life decreases steadily over time. 

However, when the sensor and actuator 

components are exposed to a quantify process 

noise, the simulated results show a drastic shift 

from normal. It can therefore be concluded that 

when the sensor and actuator components are 

subjected to the harsh operational and 

environmental conditions their remaining useful 

life becomes irregular and sometime unpredictable 

as it is seen in the study. 
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